

1

A Deep Dive into The Grief
Ransomware’s Capabilities

Prepared by: LIFARS, LLC

Date: 12/30/2021

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

2

EXECUTIVE SUMMARY

Grief ransomware is the successor of the DoppelPaymer ransomware, which emerged from the

BitPaymer ransomware. Grief is deployed in an environment already compromised by Dridex and

where the threat actor performed post-exploitation activities using Cobalt Strike. The ransomware

is obfuscated and employs anti-analysis techniques that include API hashing, Vectored Exception

Handling (VEH) manipulation, the Heaven’s Gate technique, encrypt relevant data using RC4.

Grief runs with specific parameters computed based on the victim's environment and crashes if

no/incorrect parameters are provided (if you have been a victim of Grief ransomware, please

contact us). The malware deletes all Volume Shadow Copies using vssadmin and Diskshadow and

disables Microsoft Defender Antivirus. The encrypted files have the “.pay0rgrief” extension, and

the malware imports an RSA public key that will be used to encrypt the generated AES file

encryption keys.

https://lifars.com/contact-us/

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

3

ANALYSIS AND FINDINGS

SHA256: 2d1d08fce7156053c017825b722968b3117c9230412f4e7da5f89699ec9913cd

The DLL file is one of the most challenging malware samples we’ve even analyzed because of the
multiple layers of obfuscation, API hashing, Vectored Exception Handling, and relevant strings
decrypted at runtime using RC4. We will sequentially explain how we’ve overcome every obstacle
and what challenges remain.

The binary has only one export function called “RoonlpvfdRoomvlof”:

Figure 1

The malware retrieves the path of the executable file of the current process (which in our case is
rundll32.exe) using the GetModuleFileNameW API:

Figure 2

The process gets a module handle for a module called “self.exe”:

Figure 3

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

4

VirtualAlloc is utilized to allocate memory in the address space of the current process (0x1000 =
MEM_COMMIT, 0x4 = PAGE_READWRITE):

Figure 4

The binary writes a new executable to the newly created memory area and transfers the execution
flow to a function inside it. The LoadLibraryA routine is used to load multiple DLLs into the address
space of the process:

Figure 5

The GetProcAddress API is utilized to retrieve the address of export functions from multiple DLLs:

Figure 6

The process changes the protection of the memory area where the malicious DLL resides by
calling the VirtualProtect routine (0x4 = PAGE_READWRITE):

Figure 7

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

5

The original DLL’s code is modified, and a different DLL file appears in place of it. After the
modifications are done, the memory protection is changed again (0x2 = PAGE_READONLY):

Figure 8

The binary disables the DLL_THREAD_ATTACH and DLL_THREAD_DETACH notifications for
the newly created DLL:

Figure 9

The final DLL represents the last stage of Grief ransomware. It has 5 export functions, however,
only one is relevant in our analysis: DllRegisterServer. The other 4 exports jump in the middle of
other functions, and we believe the threat actor didn’t intend to use any of them:

Figure 10

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

6

An important hint which suggests that the file is encrypted/obfuscated is the lack of imports:
GetCommandLineW, lstrcpyW, CommandLineToArgvW, and RtlComputeCrc32. Grief, like its
predecessor DoppelPaymer [1], is designed to run only with specific argument(s), otherwise it
will crash. The ransomware extracts the arguments using the GetCommandLineW and
CommandLineToArgvW APIs.

The malware computes the CRC32 checksum of the last argument, adds 0x1EC6086B to the
result, and finally adds the instruction pointer address to this final value (figure 11 is almost
identical to the figure presented at [1] regarding the DoppelPaymer Control Flow Obfuscation).
If no arguments/incorrect arguments are provided, the ransomware crashes. This action
represents an anti-sandbox technique and a drawback for malware analysis (if you’re not the
victim, of course):

Figure 11

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

7

We were able to find good insights even without the required arguments, based on the analysis
of the most complex functions.

The first anti-analysis technique we present consists of inserting lots of “int 3” (0xCC) instructions
in the code. This technique is like the one employed by Dridex and explained at [2]. An example
of such instructions is shown in figure 12:

Figure 12

Grief registers a new customized Exception Handler by calling the
RtlAddVectoredExceptionHandler API:

Figure 13

The exception handler displayed in figure 14 expects an exception code as an argument. Whether
the exception code is 0xC0000005 (ACCESS_VIOLATION), 0xC00000FD
(STATUS_STACK_OVERFLOW), and 0xC0000374 (Heap Corruption), the malware kills itself
by calling the NtTerminateProcess API. If the exception code is 0x80000003
(EXCEPTION_BREAKPOINT), the function mimics the “call eax” instruction, which means that
two “int 3” instructions can be interpreted as a “call eax” instruction. We’ve patched the binary
by replacing the “0xCCCC” bytes with “0xFFD0”.

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

8

Figure 14

Grief implements API hashing in multiple functions. The first argument is the hashed DLL name,
and the 2nd argument is the hashed API name:

Figure 15

Figure 16

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

9

A snippet of one of the functions that parse the PEB (Process Environment Block) structure,
performs XOR operations, and determines which APIs should be used, is shown below:

Figure 17

The result of the above operations, which is the address of an API, is stored in the EAX register.
For example, figure 18 reveals an API that is used to kill the current process:

Figure 18

Capa [3] has been used to detect any encryption algorithms in our malicious DLL. It has identified
the RC4 algorithm in sub_6A996248 based on the structure of the operations:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

10

Figure 19

Figure 20

The CryptAcquireContextW routine is utilized to acquire a handle to a key container within a CSP
(cryptographic service provider). The arguments are szProvider = "Microsoft Enhanced RSA and
AES Cryptographic Provider", 0x18 = PROV_RSA_AES, and 0xF0000000 =
CRYPT_VERIFYCONTEXT:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

11

Figure 21

The function identified above is utilized to decrypt relevant strings using the RC4 algorithm. The
RC4 key is changing frequently and has 48 bytes. We enumerate a list of decrypted strings and
their explanations according to our analysis and the OSINT.

Grief doesn’t encrypt the files which contain the following strings in their name and also the files
that have the following extensions:

Figure 22

The ransomware doesn’t encrypt the files that are located in the following directories:

Figure 23

The malware also decrypts a list of environment-variable strings, which will be used as arguments
for the ExpandEnvironmentStringsA function:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

12

Figure 24

A list of services to be stopped is also decrypted using RC4 (see figure 25). These services might

lock important files such as databases, and the ransomware wouldn’t be able to encrypt them.

Figure 25

The binary also decrypts a list of Sophos services that will be stopped:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

13

Figure 26

Grief appends the following extension to the file name of the encrypted files:

Figure 27

The ransom note file name is also decrypted using RC4:

Figure 28

An RSA public key that is Base64-encoded is decrypted by the process:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

14

Figure 29

The content of the ransom note is also revealed:

Figure 30

The LegalNoticeCaption and LegalNoticeText registry values will be modified to contain the client’s
name, a password, and the Dark web link that needs to be accessed in order to communicate
with the threat actor. We’ve redacted the company name, however, we’ve confirmed that it was
listed on the Grief’s page:

Figure 31

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

15

Figure 32

The process also decrypts the Windows Defender Registry Key and the DisableAntiSpyware
registry key, which will be utilized to turn off Microsoft Defender Antivirus:

Figure 33

Figure 34

A list of commands that will be used to delete the Volume Shadow Copies is decrypted by the
ransomware:

Figure 35

Figure 36

Grief decrypts even more data using RC4, however, we’ve included the other less relevant strings
in the appendix for completeness.

The ransom note called “.iwant2survive.html” is displayed in figure 37:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

16

Figure 37

ExpandEnvironmentStringsA is utilized to expand an environment-variable string and replace it

with the value defined for the current user:

Figure 38

The malicious process extracts the NetBIOS name of the local computer via a function call to
GetComputerNameW:

Figure 39

The binary acquires a handle to a key container within a CSP (cryptographic service provider)
using the CryptAcquireContextW API (0x18 = PROV_RSA_AES, 0xF0000000 =
CRYPT_VERIFYCONTEXT):

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

17

Figure 40

The CryptCreateHash function is used to create a handle to a CSP hash object (0x8003 =
CALG_MD5):

Figure 41

The binary computes the MD5 hash of the computer name by calling the CryptHashData routine:

Figure 42

The hash size (16 bytes) is extracted by calling the CryptGetHashParam API (0x4 =
HP_HASHSIZE):

Figure 43

The hash value is retrieved using the same API (0x2 = HP_HASHVAL):

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

18

Figure 44

From our analysis and the OSINT, one of the parameters that Grief is supposed to run with is “-
<First 6 chars from the hash value>”. Based on this observation, the parameter changes from
one host to another.

The binary retrieves the command line string for the current process:

Figure 45

CommandLineToArgvW is utilized to parse the command line string and return an array of pointers
to the cmd line arguments:

Figure 46

The malicious process retrieves the path of the executable of the current process via a function
call to GetModuleFileNameW:

Figure 47

The ransomware also computes the MD5 hash of the string “1<Computer Name extracted
earlier>”:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

19

Figure 48

The file creates an event object using the NtCreateEvent routine (0x1F0003 =
EVENT_ALL_ACCESS):

Figure 49

The process creates a mutant object by calling the NtCreateMutant function (0x1F0001 =

MUTEX_ALL_ACCESS):

Figure 50

The malware decodes the Base64-encoded RSA public key using the CryptStringToBinaryA
function (0x1 = CRYPT_STRING_BASE64):

Figure 51

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

20

Figure 52

Grief decodes a structure of the X509_PUBLIC_KEY_INFO type by calling the
CryptDecodeObject API (0x10001 = PKCS_7_ASN_ENCODING | X509_ASN_ENCODING,
0x8 = X509_PUBLIC_KEY_INFO):

Figure 53

Figure 54

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

21

CryptImportPublicKeyInfo is utilized to convert and import the RSA public key information into
the provider (0x10001 = PKCS_7_ASN_ENCODING | X509_ASN_ENCODING):

Figure 55

The RSA public key is in the ASN.1 format, and a great explanation of this format is presented at
[4]. The public key is used to encrypt the generated AES file encryption keys. We were not able
to reach the point where the malware encrypts the files due to the lack of the initial parameters.

Grief also implements the Heaven’s Gate technique, which is fully described at [5]. Shortly, the
process running as a 32-bit binary switches to the 64-bit environment and executes some
instructions there. As we can see in figure 56, the binary pushes 0x33 (the segment selector) on
the stack and calls the next line. The retf instruction is a “far return” and specifies the address
where the execution returns and the segment. The code that starts after the retf instruction
should be interpreted as 64-bit and debugged accordingly (for example, using WinDbg because
x64dbg or the IDA Pro debugger can’t be used to perform the switch).

Figure 56

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

22

Deletion of Volume Shadow Copies using vssadmin and Diskshadow. Disable
Microsoft Defender Antivirus

The ransomware initializes the COM library for use by the calling thread using the CoInitializeEx
API (0x2 = COINIT_APARTMENTTHREADED):

Figure 57

The binary calls the CoCreateInstance function in order to create a Group Policy Object with the

CLSID {EA502722-A23D-11D1-A7D3-0000F87571E3} (0x1 = CLSCTX_INPROC_SERVER):

Figure 58

The OpenLocalMachineGPO method is used to open the default GPO for the computer and load
the registry information (0x1 = GPO_OPEN_LOAD_REGISTRY):

Figure 59

GetRegistryKey is utilized to retrieve a handle to the root of the registry key for the computer

section (0x2 = GPO_SECTION_MACHINE):

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

23

Figure 60

The malicious binary opens the "SOFTWARE\Policies\Microsoft\Windows Defender" registry key

(0x3 = KEY_QUERY_VALUE | KEY_SET_VALUE):

Figure 61

The process turns off Microsoft Defender, as well as 3rd-party antivirus software and apps by

setting the “DisableAntiSpyware” registry value to 1:

Figure 62

Figure 63

The Save method is used to save the specified registry policy settings to disk and update the
revision number. The parameter called pGuidExtension is set to the GUID {35378eac-683f-11d2-
a89a-00c04fbbcfa2} and pGuid is set to {3D271CFC-2BC6-4AC2-B633-3BDFF5BDAB2A}:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

24

Figure 64

The GPO object created earlier is deleted using the Delete method:

Figure 65

Grief enumerates the executable files located in the System32 directory using the FindFirstFileExW
routine (0x1 = FindExInfoBasic, 0x2 = FIND_FIRST_EX_LARGE_FETCH):

Figure 66

The process computes a “hash” (4-byte value) of each executable name using a custom function:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

25

Figure 67

The hash value is XOR-ed with 0x84794EF2, and then compared with 0x668B9032 (hard-coded
value). Whether the two values aren’t equal, the malware continues the enumeration by calling
the FindNextFileW API:

Figure 68

The binary is looking for vssadmin.exe. It disables file system redirection for the current thread
using Wow64DisableWow64FsRedirection:

Figure 69

The ransomware deletes all Volume Shadow Copies using vssadmin (0x08000000 =
CREATE_NO_WINDOW):

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

26

Figure 70

The process restores file system redirection for the current thread via a function call to

Wow64RevertWow64FsRedirection:

Figure 71

The process of enumerating the executable files from the System32 folder is repeated one more
time, and the XOR-ed result is compared with 0x96164682 (hard-coded value). Based on our
analysis, the targeted file is Diskshadow.exe.

CryptGenRandom is utilized to generate 4 random bytes 3 times:

Figure 72

The binary creates an empty temporary file with a prefix string generated based on the random

bytes:

Figure 73

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

27

The malware retrieves the short path form of the specified path by calling the
GetShortPathNameW routine:

Figure 74

Grief ransomware opens the newly created file using CreateFileW (0xC0000000 =
GENERIC_READ | GENERIC_WRITE, 0x5 = TRUNCATE_EXISTING, 0x80 =
FILE_ATTRIBUTE_NORMAL):

Figure 75

The malware calls the SetFileTime function in order to prevent file operations using the file handle
from modifying the last access time and the last write time (dwLowDateTime and
dwHighDateTime are set to 0xFFFFFFFF):

Figure 76

The file is populated with the following content:

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

28

Figure 77

The ransomware deletes all Volume Shadow Copies by creating a Diskshadow process and then

running the “delete shadows all” command:

Figure 78

The malicious file retrieves the share names available on the local computer using the
NetShareEnum API:

Figure 79

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

29

REFERENCES

1. https://www.crowdstrike.com/blog/doppelpaymer-ransomware-and-dridex-2/
2. https://cyber-anubis.github.io/malware%20analysis/dridex/
3. https://github.com/mandiant/capa
4. https://stackoverflow.com/questions/18039401/how-can-i-transform-between-the-two-

styles-of-public-key-format-one-begin-rsa
5. https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-

gate/

https://www.crowdstrike.com/blog/doppelpaymer-ransomware-and-dridex-2/
https://cyber-anubis.github.io/malware%20analysis/dridex/
https://github.com/mandiant/capa
https://stackoverflow.com/questions/18039401/how-can-i-transform-between-the-two-styles-of-public-key-format-one-begin-rsa
https://stackoverflow.com/questions/18039401/how-can-i-transform-between-the-two-styles-of-public-key-format-one-begin-rsa
https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/
https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

30

APPENDIX

The other strings decrypted using the RC4 algorithm are shown in the following pictures:

Figure 80

Figure 81

Figure 82

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

31

Figure 83

Figure 84

Figure 85

Figure 86

Figure 87

Figure 88

Figure 89

List of files and file’s extensions to be skipped:

• svsho*.exe;schre*.bat;V01.lo*;V01.ch*;V01res*.jrs;RacWmi*.sdf;Web*V01.dat;default.r
dp;NTUSER.DA*;*.lnk;*.ico;*.ini;*.msi;*.chm;*.sys;*.hlf;*.lng;*.inf;*.ttf;*.cmd;*.LNK;*
.ICO;*.INI;*.MSI;*.CHM;*.SYS;*.HLF;*.LNG;*.INF;*.TTF;*.CMD

List of directories to be skipped:

• System Volume Information;$RECYCLE.BIN;$Recycle.Bin;WebCache;Caches;VirtualStore

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

32

List of environment-variable strings:

• %ProgramData%\\Microsoft\\Windows\\WER\\ReportQueue\\;%windir%;%temp%;%A
PPDATA%\\Local\\VirtualStore\\;%HOMEDRIVE%\\Documents and Settings\\All
Users\\Application Data\\Application Data\\;%HOMEDRIVE%\\Users\\All
Users\\Application Data\\Application Data\\;%SystemDrive%\\Documents and
Settings\\All Users\\Application Data\\Application Data\\;%SystemDrive%\\Users\\All
Users\\Application Data\\Application Data\\

List of services to be stopped:

• msolap$*;mssql$*;sqlagent$*;reportserver$*
• sophos client firewall*;sophos mcs*;sophos web intelligence*;sophospatch*

Extension of encrypted files:

• .pay0rgrief

Grief’s Dark web site and the impacted client:

• "CROMOLOGY SERVICES ... ZOLPAN, you are fu**ed." (Redacted)
• "DO NOT TOUCH ANYTHING!\r\n\r\nWhat to do (password: oN*********

):\r\nhttp[:]//payorgz3j6hs2gj66nk6omfw65atgmqwzxqbbxnqi3bv2mlwgcirunad[.]onion/
demand/da597c8432bc4458b9475627fd55eded\r\n\r\nUSE TOR.\r\n\r\nP0G_\r\n\r\n"
(Redacted)

244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS.com (212) 222-7061 info@lifars.com

33

API hashing table

A169D93E ExitProcess 7408F6CF RegDeleteValueA

B7303F40 GetCurrentDirectoryW CB74E56B RegSetValueExA

F1E04D0E CreateDirectoryW 3440E30C RegQueryValueExA

14134842 CreateThread 3FA0503A RegSetValueExW

D8FC22B5 CreateProcessW C094565D RegQueryValueExW

C4B669CF CreateFileMappingW 8D388F19 RegEnumValueA

1D4786C2 QueryDosDeviceW 2D504FC7 RegCloseKey

2CE276DD MapViewOfFile B1978170 RegOpenKeyExW

BD63F85D UnmapViewOfFile 49A2BC02 RegEnumKeyW

589C7CD4 GetFileType 2478983B RegCreateKeyExW

2596A7DB CreateFileW 2C39743C CryptReleaseContext

D7509C5D GetVolumeNameForVolumeMountPointW 826FDC1D CryptGetHashParam

8EB1B560 DeviceIoControl 429ACFE2 CryptHashData

22C3F66E ExpandEnvironmentStringsA 5B40E61E CryptCreateHash

78120C03 GetModuleFileNameW D8EFD506 CryptAcquireContextW

ECED49A4 FileTimeToSystemTime 8E1D8F12 CryptDestroyHash

BC8CDE49 SystemTimeToFileTime 53F5694D CryptGenRandom

A88A7EA6 GetShortPathNameW D4E43A30 CryptEncrypt

F5656839 GetLogicalDrives DE78F152 CryptExportKey

86089CF3 GetDriveTypeW 6F75B3F1 CryptGenKey

D9DE4146 SetThreadPriority 69836B71 CryptDestroyKey

E66CC345 GetDiskFreeSpaceExW 8A2AACA0 SetSecurityInfo

65C66CA1 SetFileAttributesW 7EBEE13C GetSecurityDescriptorSacl

AE320B72 MoveFileW 7F0B03AE ConvertStringSecurityDescriptorToSecurityDescriptorW

F68850CB MultiByteToWideChar 8B6FA607 ControlService

1EF9AB7B WideCharToMultiByte 3373DF6A OpenServiceW

AF2A8DE9 GetVersionExW 2EE029FE StartServiceCtrlDispatcherW

F246E304 GetSystemInfo F40C812D CloseServiceHandle

BA71B979 LocalFree F66A15F1 OpenSCManagerW

AA297AF9 IsWow64Process 9675A67D ChangeServiceConfigW

C0ED06A6 GetSystemWow64DirectoryW 5CDDF47 StartServiceW

F61D52F9 GetSystemDirectoryW 3F1483A7 QueryServiceConfigW

459F8107 GetEnvironmentStringsW 42132256 QueryServiceStatus

9224D8AB GetTempFileNameW 26652D0D EnumServicesStatusExW

8F5E891D GetWindowsDirectoryW E8C5D221 SetServiceStatus

CA2E3F55 GetComputerNameW 518E8878 RegisterServiceCtrlHandlerW

5DCB4A66 GetCommandLineW 29DBE130 GetUserNameW

D5D107B9 IsBadReadPtr 787BAFBC GetSidSubAuthority

5321A741 GetThreadId F2EC9F3E GetSidSubAuthorityCount

1F442F52 GetProcessId 922CE64F GetTokenInformation

99CD5D11 GetCurrentProcessId 7DBF48E7 OpenProcessToken

72A2E993 SearchPathW B514674F FreeSid

4FCE620F Wow64DisableWow64FsRedirection 9C01B84F ConvertSidToStringSidA

84A5D7E5 Wow64RevertWow64FsRedirection D46EE9FF EqualSid

569C7845 GetLastError 434A3624 AllocateAndInitializeSid

A5F904F1 SetFileTime 967918CF RegSetKeyValueW

6BBEA486 SetFilePointer 62DE91AE CreateProcessAsUserW

23820F97 GetFileSize 65E4543B NetUserEnum

8D254D22 ReadFile 0BCF31C0 NetUserSetInfo

489018E0 WriteFile 53FF883 NetShareEnum

7E44617A FlushFileBuffers 4266BEEF NetApiBufferFree

A160FFA8 SetEndOfFile F5EE9951 NetShareDel

BBD6B3B8 GetFileTime A633633A CryptStringToBinaryA

2236F20A GetFileAttributesExW C380FA58 CryptDecodeObject

4348FE4D RemoveDirectoryW 2F9F0714 CryptImportPublicKeyInfo

E1369068 DeleteFileW DD2C7E1F WTSEnumerateSessionsW

3E4FB2EF GetHandleInformation 7809AAC1 WTSQueryUserToken

784487EE QueryFullProcessImageNameW 71A22286 WTSFreeMemory

7D5DB015 GetProcessTimes 0B910B2 ZwClose

98B31D0F GetExitCodeProcess 4D62C13 RtlExitUserThread

9F5CDB LocalSize 8631D459 GetClassNameW

565B4A16 GetSystemTime

5C52B868 FindClose
7380D608 FindFirstFileExW
58AD2EB FindNextFileW

5982AEC6 SetLastError
BBB8F37F LoadLibraryA
5E116D7D FreeLibrary

4D05510D GetProcAddress

