

1

A Detailed Analysis of The Last
Version of Conti Ransomware

Prepared by: LIFARS, LLC
Date: 10/08/2021

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

2

EXECUTIVE SUMMARY
Conti ransomware has been sold as a RaaS (Ransomware as a Service) in underground forums
and it’s usually deployed by other malware such as TrickBot and BazaLoader/BazarLoader. It can
run with one of the following parameters: “-p”, “-m”, “-size”, “-log” and “-nomutex”. A new mutex
called “YUIOGHJKCVVBNMFGHJKTYQUWIETASKDHGZBDGSKL237782321344” can be created to
ensure that only one instance of ransomware is running at a single time. The malware has the
ability to only encrypt network shares (“-m net” parameter), local drives (“-m local” parameter),
or both of them (“-m all” parameter). The volume shadow copies are deleted using wmic and
COM objects. The algorithm used to encrypt files is ChaCha8, with the key and nonce being
encrypted using an RSA public key.

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

3

ANALYSIS AND FINDIGS
SHA256: 4bfd58d4e4a6fe5e91b408bc190a24d352124902085f9c2da948ad7d79b72618

The malware obfuscates the stack strings and implements multiple custom algorithms to decrypt
them. An example of a decryption algorithm is shown below, along with the decrypted string:

Figure 1

Figure 2

The relevant APIs are imported dynamically at runtime using some hashing algorithms (the first
parameter is a hash value; the second parameter is an offset). The return value is placed into the
EAX register:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

4

Figure 3

The binary retrieves the command-line string for the process by calling the GetCommandLineW
API:

Figure 4

CommandLineToArgvW is utilized to extract an array of pointers to the command line arguments,
as shown in figure 5:

Figure 5

The following strings have been decrypted using algorithms like the one presented in figure 1:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

5

Figure 6
The executable creates a mutex called
“YUIOGHJKCVVBNMFGHJKTYQUWIETASKDHGZBDGSKL237782321344” (if the malware runs
with the “-nomutex” parameter, then no mutex is created):

Figure 7

GetNativeSystemInfo is used to retrieve information about the system:

Figure 8

The malicious file creates 2 (which is the number of processors) threads that will handle the files
encryption, as we’ll describe in the upcoming paragraphs:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

6

Figure 9

The executable takes a snapshot of all processes in the system by calling the
CreateToolhelp32Snapshot routine (0x2 = TH32CS_SNAPPROCESS):

Figure 10

The processes are enumerated using the Process32FirstW and Process32NextW APIs:

Figure 11

Figure 12

The malware searches for the “explorer.exe” process and saves its ID into a buffer for later use.
The CoInitializeEx function is utilized to initialize the COM library for use by the thread, as
highlighted below:

Figure 13

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

7

The CoInitializeSecurity API is used to register security and set the default security values for the
current process (0x3 = RPC_C_IMP_LEVEL_IMPERSONATE):

Figure 14

The malware uses COM objects and wmic in order to delete the volume shadow copies on the
system. It calls the CoCreateInstance function with the CLSID {4590F812-1D3A-11D0-891F-
00AA004B2E24}, which creates an IWbemLocator object:

Figure 15

A new IWbemContext object is created with the CLSID {674B6698-EE92-11D0-AD71-
00C04FD8FDFF}:

Figure 16
The ConnectServer method is utilized to connect to the “ROOT\CIMV2” namespace:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

8

Figure 17

The binary sets the authentication information that is used to make calls on a proxy via a
CoSetProxyBlanket API call (0xA = RPC_C_AUTHN_WINNT, 0x3 =
RPC_C_AUTHN_LEVEL_CALL, 0x3 = RPC_C_IMP_LEVEL_IMPERSONATE):

Figure 18

The following WQL (SQL for WMI) query is executed by the ransomware:

Figure 19

For each volume shadow copy, the binary extracts its ID using the Get method:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

9

Figure 20
The following string that contains a process name with parameters is decrypted:

Figure 21
Wow64DisableWow64FsRedirection is utilized to disable file system redirection for the current
thread:

Figure 22

The executable deletes each volume shadow copy that corresponds to the ID extracted above
using the CreateProcessW API (0x08000000 = CREATE_NO_WINDOW):

Figure 23

The malware restores file system redirection by calling the Wow64RevertWow64FsRedirection
routine:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

10

Figure 24

The valid drives on the system are retrieved by calling the GetLogicalDriveStringsW function:

Figure 25

There is a function call to WSAStartup that initiates the use of the Winsock DLL:

Figure 26

A new socket is created by the process (0x2 = AF_INET, 0x1 = SOCK_STREAM, 0x6 =
IPPROTO_TCP):

Figure 27

The malicious process calls the WSAIoctl function with the
SIO_GET_EXTENSION_FUNCTION_POINTER command code in order to invoke an
extension function, as shown in figure 28:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

11

Figure 28

The gethostname routine is utilized to retrieve the host name for the local computer:

Figure 29

The malicious file retrieves host information that corresponds to the host extracted above:

Figure 30

The CreateIoCompletionPort API is used to create an I/O (input/output) completion port that is
not yet associated with a file handle (0xFFFFFFFF = INVALID_HANDLE_VALUE):

Figure 31

The ARP table is extracted by calling the GetIpNetTable routine, and the result is stored in a
MIB_IPNETTABLE structure:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

12

Figure 32

Each IP address extracted above is converted into a string (dotted-decimal format):

Figure 33

The malware is only interested in local IP addresses because it compares every IP address with
the prefixes “172.”, “192.168.”, “10.” and “169.”. The binary creates 2 new threads via a function
call to CreateThread:

Figure 34

Figure 35

PostQueuedCompletionStatus is utilized to send an I/O completion packet to the completion port
created earlier (dwCompletionKey = 0x1):

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

13

Figure 36

THREAD ACTIVITY – SUB_A7AF90 FUNCTION
The file creates a queue for timers (which are objects that allow the user to specify a function
that will be called at a particular time):

Figure 37

The ransomware attempts to extract the I/O completion packet from the I/O completion port
(sent by the main thread) by calling the GetQueuedCompletionStatus routine:

Figure 38

A new socket is created by calling the WSASocketW API (0x2 = AF_INET, 0x1 =
SOCK_STREAM, 0x6 = IPPROTO_TCP, 0x1 = WSA_FLAG_OVERLAPPED):

Figure 39

The bind routine associates the local address with the above socket:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

14

Figure 40

CreateIoCompletionPort is utilized to associate the socket created above with the I/O completion
port. After this operation is complete, the process can receive notifications of the completion of
I/O operations involving the socket handle (CompletionKey = 0x2):

Figure 41

The binary converts a port number (445) from network byte order to host byte order:

Figure 42

The malware tries to connect to different IP addresses on port 445 (192.168.10.x and
192.168.164.x) using the LPFN_CONNECTEX function, as described below:

Figure 43

The CreateTimerQueueTimer routine is used to create a timer-queue timer, which expires at a
specific time (0x7530 = 30000ms = 30 seconds) and then a callback function is called:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

15

Figure 44

The setsockopt API is utilized to set the SO_UPDATE_CONNECT_CONTEXT option, which
updates the properties of the socket after a connection is established (0xFFFF = SOL_SOCKET,
0x7010 = SO_UPDATE_CONNECT_CONTEXT):

Figure 45

The file retrieves the SO_CONNECT_TIME option, which represents the number of seconds a
socket was connected (0xFFFF = SOL_SOCKET, 0x700C = SO_CONNECT_TIME):

Figure 46

Whether the sample has successfully established a connection to a particular IP address, then it
calls the WSAAddressToStringW routine to convert the components of that sockaddr structure
into a human-readable string:

Figure 47

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

16

PostQueuedCompletionStatus is utilized to send an I/O completion packet to the
completion port created before (dwCompletionKey = 0x3):

Figure 48

The binary shuts down send operations for the socket (0x1 = SD_SEND):

Figure 49

THREAD ACTIVITY – SUB_A7A880 FUNCTION
The NetShareEnum function is utilized to retrieve information about the network shares available
on other computers:

Figure 50

Some strings that will be written in the log file (if logging mode is enabled) are also decrypted
using custom algorithms:

Figure 51

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

17

The “ADMIN$” share will not be targeted by the malware (the others will be encrypted):

Figure 52

THREAD ACTIVITY – SUB_A7C7D0 FUNCTION
CryptAcquireContextA is used to obtain a handle to a key container within a CSP (0x18 =
PROV_RSA_AES, 0xF0000000 = CRYPT_VERIFYCONTEXT):

Figure 53

An RSA public key is imported via a CryptImportKey function call:

Figure 54

The process creates a file called “readme.txt” in every folder that it encrypts (0x40000000 =
GENERIC_WRITE, 0x2 = CREATE_ALWAYS):

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

18

Figure 55

The following 4-byte values suggest that the encryption algorithm is a ChaCha cipher (Ref.
https://arxiv.org/pdf/1907.11941.pdf):

Figure 56

The encrypted content of the ransom note is decrypted using the ChaCha algorithm, and the file
is populated by calling the WriteFile routine, as highlighted in figure 57.

Figure 57

The files are enumerated in the targeted directory using the FindFirstFileW and FindNextFileW
APIs:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

19

Figure 58

Figure 59

There is a comparison between the directory name and a list of directories that will be skipped
by the ransomware:

Figure 60

The PathIsDirectoryW routine is utilized to determine whether a path is a valid directory:

Figure 61

The following files/files extensions will also be skipped by Conti:

Figure 62

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

20

The sample descrypts the following DLL names: OleAut32.dll, Rstrtmgr.dll, Iphlpapi.dll,
Netapi32.dll, Advapi32.dll, Kernel32.dll, Shell32.dll, Shlwapi.dll, ws2_32.dll, User32.dll, ntdll.dll,
Ole32.dll. The GetModuleHandleA function is utilized to retrieve a handle for these DLLs. The
malware generates 32 random bytes by calling the CryptGenRandom routine (this will be used as
the ChaCha key):

Figure 63

There is also a call to CryptGenRandom that generates 8 random bytes, which will be used as the
ChaCha8 nonce (this is the moment when we can tell for sure that the encryption algorithm for
files is ChaCha8):

Figure 64

The ChaCha8 key and nonce are encrypted using the RSA public key:

Figure 65

The ransomware retrieves file system attributes for the targeted file:

Figure 66

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

21

The CreateFileW API is utilized to open the targeted file (0xC0000000 = GENERIC_READ |
GENERIC_WRITE, 0x3 = OPEN_EXISTING):

Figure 67

The malware comes with two hard-coded lists of file extensions that will be encrypted. It’s
important to mention that if the file extension doesn’t belong to these lists, it will be partially
encrypted using a different execution flow that will be explained later (the full lists are available
in the Appendix):

Figure 68

Figure 69

The process writes the encrypted ChaCha8 key and nonce to the encrypted file:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

22

Figure 70

There are 3 different cases depending on the file size: small files (< 1MB), medium files (between
1MB and 5MB), and large files (> 5MB). In the case of medium and large files, there exist 2 sub-
cases depending on the file extension (if it belongs to the targeted lists or not). The following 10-
byte buffer that contains a marker (0x24) and the file size (0x2000) is appended to the encrypted
file:

Figure 71

The binary reads the file content using the ReadFile function:

Figure 72

Figure 73

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

23

The content is encrypted using the ChaCha8 algorithm implemented by Conti:

Figure 74

A snippet of the ChaCha8 algorithm developed by the ransomware is presented in figure 75.

Figure 75

The encrypted data is written to the file using the WriteFile API:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

24

Figure 76

The “.PSFUX” extension is added to the file name:

Figure 77

The ransom note that is created in every encrypted directory is displayed below:

Figure 78

An example of an encrypted file (file size < 1MB) is highlighted in the next 2 pictures:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

25

Figure 79

Figure 80
Whether the file size is between 1MB and 5MB and the extension is not in the targeted lists, the
ransomware only encrypts the first MB of the file, and the encrypted file has the following
structure:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

26

Figure 81

Whether the file size is between 1MB and 5MB and the extension is in the targeted lists, the
ransomware encrypts the entire content, and the encrypted file has the following structure:

Figure 82

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

27

Whether the file size is greater than 5MB and the extension is not in the targeted lists, the
ransomware encrypts 5 chunks of (file size/100 * 10) bytes. In this case, this value is
(0x500010/0x64 * 0xa) = 0x7FFF8 bytes (basically, the malware encrypts 0x7FFF8 bytes, then
skips some bytes, and then encrypts 0x7FFF8 bytes again and so on). The structure of the
encrypted file is presented below:

Figure 83

Figure 84
Whether the file size is greater than 5MB and the extension is in the targeted lists, the
ransomware encrypts the entire content, and the encrypted file has the following structure:

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

28

Figure 85
When the malware runs with the “-log” parameter, then the list of actions is logged in a file:

Figure 86

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com

29

APPENDIX
Lists of targeted extensions:

• .4dd .4dl .accdb .accdc .accde .accdr .accdt .accft .adb .ade .adf .adp .arc .ora .alf .ask
.btr .bdf .cat .cdb .ckp .cma .cpd .dacpac .dad .dadiagrams .daschema .db .db-shm .db-
wal .db3 .dbc .dbf .dbs .dbt .dbv .dbx .dcb .dct .dcx .ddl .dlis .dp1 .dqy .dsk .dsn .dtsx
.dxl .eco .ecx .edb .epim .exb .fcd .fdb .fic .fmp .fmp12 .fmpsl .fol .fp3 .fp4 .fp5 .fp7
.fpt .frm .gdb .grdb .gwi .hdb .his .ib .idb .ihx .itdb .itw .jet .jtx .kdb .kexi .kexic .kexis
.lgc .lwx .maf .maq .mar .mas .mav .mdb .mdf .mpd .mrg .mud .mwb .myd .ndf .nnt
.nrmlib .ns2 .ns3 .ns4 .nsf .nv .nv2 .nwdb .nyf .odb .oqy .orx .owc .p96 .p97 .pan .pdb
.pdm .pnz .qry .qvd .rbf .rctd .rod .rodx .rpd .rsd .sas7bdat .sbf .scx .sdb .sdc .sdf .sis
.spq .sql .sqlite .sqlite3 .sqlitedb .te .temx .tmd .tps .trc .trm .udb .udl .usr .v12 .vis .vpd
.vvv .wdb .wmdb .wrk .xdb .xld .xmlff .abcddb .abs .abx .accdw .adn .db2 .fm5 .hjt .icg
.icr .kdb .lut .maw .mdn .mdt

• .vdi .vhd .vmdk .pvm .vmem .vmsn .vmsd .nvram .vmx .raw .qcow2 .subvol .bin .vsv
.avhd .vmrs .vhdx .avdx .vmcx .iso

