
Vjw0rm Worm/RAT

Prepared by: LIFARS, LLC
Date: 09/02/2021

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 2

EXECUTIVE SUMMARY
Vjw0rm is a worm that usually spreads via USB drives. It's also classified as a RAT because it executes
commands received from the C2 server. This malware achieves persistence using a Registry Run key and
by copying itself to the Startup folder.

We will analyze a Javascript file called 45678-INVOICE.js, which can be downloaded from
https://app.any.run/tasks/6a900492-4f4b-42a2-ab80-7f5a7262458b/. This is a hybrid worm/RAT called
Vjw0rm.

JSTool is a Notepad++ plugin that is used to display the code in JavaScript format:

Figure 1

ANALYSIS AND FINDINGS

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 3

In order to debug the code, we can add “<html> <script>” at the beginning of the file and
“</script></html>” at the end of the file and save the file in the html format. We’ll use the
Developer Tools from Internet Explorer and the “debugger” statement, which stops the execution of the
JavaScript and calls the debugging function (note a long string that seems to be base64-encoded):

Figure 3

Figure 2

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 4

Internet Explorer does its job and displays a warning message. One of the methods to analyze Javascript
files consists of replacing the eval function with document.write (write a string to a document stream)
because this way we can see what code would be executed. After performing the transformation, we can
open the html file again using Internet Explorer:

The malware replaced “@!” from the long string that we’ve seen with “m”, as displayed in the figure below:

The script decodes the long string using Base64 and executes it. We can use CyberChef
(https://gchq.github.io/CyberChef/) to perform this operation and save the new script as 45678-
INVOICE_Layer2.js:

As in the first script, the 2nd one decodes a base64-encoded string and then saves it as a js file called
“laeapoOSVO.js” in the %AppData% directory. The malware executes the newly created file, as shown in
figure 7 (we’ll come back to this file in a few paragraphs).

Figure 4

Figure 5

Figure 6

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 5

The process verifies if the registry key called “HKCU\vjw0rm” exists, which indicates that the host has
already been infected with this RAT. If there is no such key, it is created and populated with “TRUE” or
“FALSE” depending on the result of a comparison:

The malware performs a POST request to “http[:]//194.5.97.156:7657/Vre” with a custom user agent. The
response from the C2 server is saved for later use:

Figure 7

Figure 8

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 6

The user agent from above contains a lot of information about the local host, such as computer name, user
name, caption property that contains the OS version, antivirus software installed on the machine, a value
which denotes if the .NET VBC (Visual Basic Compiler) v.2.0.50727 is installed on the host and the value of
the registry key “HKCU\vjw0rm”, as shown in the next pictures:

Figure 11

Figure 9

Figure 10

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 7

The response from the C2 server has the following structure: “Command|V|Script|V|Filename”. The
following commands are implemented: “Cl”, “Sc”, “Ex”, “Rn”, “Up”, “Un” and “RF”, as shown in figure 12:

Figure 12

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 8

Cl command
• exit the script

Sc command
• create a temporary file called “Filename” (provided by the C2 server)
• populate the new file with malicious payload sent by the server
• execute the malicious file

Ex command
• execute additional JS code provided by the C2 server

Rn command
• open and read the current file
• replace “SUCCESS” with a parameter received from the C2 server
• save and execute the script using wscript.exe

Up command
• create a temporary file called “Filename” (provided by the C2 server)
• modify the payload received from the server by replacing “|U|” with “|V|”
• write the modified payload to the newly created file
• execute the script using wscript.exe

Un command
• execute additional code received from the C2 server
• F-Secure reported at https://www.f-secure.com/v-descs/worm_js_vjw0rm.shtml that this

command is used to uninstall the worm module
RF command

• create a temporary file called “Filename” (provided by the C2 server)
• populate the new file with malicious payload sent by the server
• execute the malicious file

For our analysis, we renamed the “laeapoOSVO.js” file as “45678-INVOICE_Layer3.js”. This code is
similar to the first script, however, there are a few differences. A snippet of the 3rd script is displayed in
figure 13.

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 9

We apply the same transformation for the base64-encoded string as in the first case (“@!” is replaced with
“m”). CyberChef is utilized to decode the string and the result is saved as 45678-INVOICE_Layer4.js:

Figure 13

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 10

This script is similar to the Layer2 file, however the C2 server changes to
http[:]//myroyailrubin2019.duia.ro:5000 (figure 15). The same commands as before are implemented by
this script.

Figure 14

Figure 15

244 Fifth Avenue, Suite 2035, New York, NY 10001
LIFARS.com (212) 222-7061 info@lifars.com 11

The script establishes persistence by creating a Run registry key called “SEJOKAOI5S” and by copying itself
to the Startup folder, as displayed in figure 16.

Indicators of Compromise
C2 domains: - http[:]//194.5.97.156:7657

- http[:]//myroyailrubin2019.duia.ro:5000

Figure 16

